Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 606(7913): 375-381, 2022 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1890198

RESUMEN

Antiretroviral therapy is highly effective in suppressing human immunodeficiency virus (HIV)1. However, eradication of the virus in individuals with HIV has not been possible to date2. Given that HIV suppression requires life-long antiretroviral therapy, predominantly on a daily basis, there is a need to develop clinically effective alternatives that use long-acting antiviral agents to inhibit viral replication3. Here we report the results of a two-component clinical trial involving the passive transfer of two HIV-specific broadly neutralizing monoclonal antibodies, 3BNC117 and 10-1074. The first component was a randomized, double-blind, placebo-controlled trial that enrolled participants who initiated antiretroviral therapy during the acute/early phase of HIV infection. The second component was an open-label single-arm trial that enrolled individuals with viraemic control who were naive to antiretroviral therapy. Up to 8 infusions of 3BNC117 and 10-1074, administered over a period of 24 weeks, were well tolerated without any serious adverse events related to the infusions. Compared with the placebo, the combination broadly neutralizing monoclonal antibodies maintained complete suppression of plasma viraemia (for up to 43 weeks) after analytical treatment interruption, provided that no antibody-resistant HIV was detected at the baseline in the study participants. Similarly, potent HIV suppression was seen in the antiretroviral-therapy-naive study participants with viraemia carrying sensitive virus at the baseline. Our data demonstrate that combination therapy with broadly neutralizing monoclonal antibodies can provide long-term virological suppression without antiretroviral therapy in individuals with HIV, and our experience offers guidance for future clinical trials involving next-generation antibodies with long half-lives.


Asunto(s)
Fármacos Anti-VIH , Anticuerpos Neutralizantes , Anticuerpos Anti-VIH , Infecciones por VIH , VIH-1 , Fármacos Anti-VIH/administración & dosificación , Fármacos Anti-VIH/efectos adversos , Fármacos Anti-VIH/inmunología , Fármacos Anti-VIH/uso terapéutico , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/efectos adversos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos ampliamente neutralizantes/administración & dosificación , Anticuerpos ampliamente neutralizantes/efectos adversos , Anticuerpos ampliamente neutralizantes/inmunología , Anticuerpos ampliamente neutralizantes/uso terapéutico , Método Doble Ciego , Anticuerpos Anti-VIH/administración & dosificación , Anticuerpos Anti-VIH/efectos adversos , Anticuerpos Anti-VIH/inmunología , Anticuerpos Anti-VIH/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/inmunología , VIH-1/aislamiento & purificación , Humanos , Carga Viral/efectos de los fármacos , Viremia/tratamiento farmacológico , Viremia/inmunología , Viremia/virología
2.
Cell Host Microbe ; 30(2): 154-162.e5, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1708092

RESUMEN

Characterizing SARS-CoV-2 evolution in specific geographies may help predict properties of the variants that come from these regions. We mapped neutralization of a SARS-CoV-2 strain that evolved over 6 months from ancestral virus in a person with advanced HIV disease in South Africa; this person was infected prior to emergence of the Beta and Delta variants. We longitudinally tracked the evolved virus and tested it against self-plasma and convalescent plasma from ancestral, Beta, and Delta infections. Early virus was similar to ancestral, but it evolved a multitude of mutations found in Omicron and other variants. It showed substantial but incomplete Pfizer BNT162b2 escape, weak neutralization by self-plasma, and despite pre-dating Delta, it also showed extensive escape of Delta infection-elicited neutralization. This example is consistent with the notion that SARS-CoV-2 evolving in individual immune-compromised hosts, including those with advanced HIV disease, may gain immune escape of vaccines and enhanced escape of Delta immunity, and this has implications for vaccine breakthrough and reinfections.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Vacuna BNT162/inmunología , Infecciones por VIH/patología , Evasión Inmune/inmunología , Inmunogenicidad Vacunal/inmunología , SARS-CoV-2/inmunología , Adulto , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Línea Celular , Chlorocebus aethiops , Femenino , VIH-1/inmunología , Humanos , Huésped Inmunocomprometido/inmunología , Pruebas de Neutralización , SARS-CoV-2/aislamiento & purificación , Sudáfrica , Vacunación , Eficacia de las Vacunas , Células Vero
3.
Signal Transduct Target Ther ; 7(1): 7, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1606287

RESUMEN

Activation-induced cytidine deaminase (AID) initiates class-switch recombination and somatic hypermutation (SHM) in antibody genes. Protein expression and activity are tightly controlled by various mechanisms. However, it remains unknown whether a signal from the extracellular environment directly affects the AID activity in the nucleus where it works. Here, we demonstrated that a deubiquitinase USP10, which specifically stabilizes nuclear AID protein, can translocate into the nucleus after AKT-mediated phosphorylation at its T674 within the NLS domain. Interestingly, the signals from BCR and TLR1/2 synergistically promoted this phosphorylation. The deficiency of USP10 in B cells significantly decreased AID protein levels, subsequently reducing neutralizing antibody production after immunization with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or human immunodeficiency virus type 1 (HIV-1) nanoparticle vaccines. Collectively, we demonstrated that USP10 functions as an integrator for both BCR and TLR signals and directly regulates nuclear AID activity. Its manipulation could be used for the development of vaccines and adjuvants.


Asunto(s)
Vacunas contra el SIDA/inmunología , Factor Activador de Células B/inmunología , Vacunas contra la COVID-19/inmunología , Citidina Desaminasa/inmunología , VIH-1/inmunología , Nanopartículas , SARS-CoV-2/inmunología , Transducción de Señal/inmunología , Ubiquitina Tiolesterasa/inmunología , Ubiquitinación/inmunología , Vacunas contra el SIDA/genética , Animales , Factor Activador de Células B/genética , Vacunas contra la COVID-19/genética , Citidina Desaminasa/genética , Células HEK293 , VIH-1/genética , Humanos , Ratones , Ratones Noqueados , SARS-CoV-2/genética , Transducción de Señal/genética , Ubiquitina Tiolesterasa/genética
4.
Viruses ; 13(11)2021 11 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1538549

RESUMEN

A growing number of studies indicate that mRNAs and long ncRNAs can affect protein populations by assembling dynamic ribonucleoprotein (RNP) granules. These phase-separated molecular 'sponges', stabilized by quinary (transient and weak) interactions, control proteins involved in numerous biological functions. Retroviruses such as HIV-1 form by self-assembly when their genomic RNA (gRNA) traps Gag and GagPol polyprotein precursors. Infectivity requires extracellular budding of the particle followed by maturation, an ordered processing of ∼2400 Gag and ∼120 GagPol by the viral protease (PR). This leads to a condensed gRNA-NCp7 nucleocapsid and a CAp24-self-assembled capsid surrounding the RNP. The choreography by which all of these components dynamically interact during virus maturation is one of the missing milestones to fully depict the HIV life cycle. Here, we describe how HIV-1 has evolved a dynamic RNP granule with successive weak-strong-moderate quinary NC-gRNA networks during the sequential processing of the GagNC domain. We also reveal two palindromic RNA-binding triads on NC, KxxFxxQ and QxxFxxK, that provide quinary NC-gRNA interactions. Consequently, the nucleocapsid complex appears properly aggregated for capsid reassembly and reverse transcription, mandatory processes for viral infectivity. We show that PR is sequestered within this RNP and drives its maturation/condensation within minutes, this process being most effective at the end of budding. We anticipate such findings will stimulate further investigations of quinary interactions and emergent mechanisms in crowded environments throughout the wide and growing array of RNP granules.


Asunto(s)
Infecciones por VIH/virología , VIH-1 , Proteínas de la Nucleocápside/inmunología , Proteasas Virales/inmunología , VIH-1/inmunología , VIH-1/fisiología , Humanos , Ensamble de Virus
5.
Front Immunol ; 12: 768695, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1523709

RESUMEN

A major barrier to human immunodeficiency virus (HIV-1) cure is the latent viral reservoir, which persists despite antiretroviral therapy (ART), including across the non-dividing myeloid reservoir which is found systemically in sanctuary sites across tissues and the central nervous system (CNS). Unlike activated CD4+ T cells that undergo rapid cell death during initial infection (due to rapid viral replication kinetics), viral replication kinetics are delayed in non-dividing myeloid cells, resulting in long-lived survival of infected macrophages and macrophage-like cells. Simultaneously, persistent inflammation in macrophages confers immune dysregulation that is a key driver of co-morbidities including cardiovascular disease (CVD) and neurological deficits in people living with HIV-1 (PLWH). Macrophage activation and dysregulation is also a key driver of disease progression across other viral infections including SARS-CoV-2, influenza, and chikungunya viruses, underscoring the interplay between macrophages and disease progression, pathogenesis, and comorbidity in the viral infection setting. This review discusses the role of macrophages in persistence and pathogenesis of HIV-1 and related comorbidities, SARS-CoV-2 and other viruses. A special focus is given to novel immunomodulatory targets for key events driving myeloid cell dysregulation and reservoir maintenance across a diverse array of viral infections.


Asunto(s)
Infecciones por VIH/inmunología , Factores Inmunológicos/inmunología , Macrófagos/inmunología , Virosis/inmunología , COVID-19/inmunología , VIH-1/inmunología , Humanos , SARS-CoV-2/inmunología
6.
Viruses ; 13(10)2021 10 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1481014

RESUMEN

The H1N1 pandemic of 2009-2010, MERS epidemic of 2012, Ebola epidemics of 2013-2016 and 2018-2020, Zika epidemic of 2015-2016, and COVID-19 pandemic of 2019-2021, are recent examples in the long history of epidemics that demonstrate the enormous global impact of viral infection. The rapid development of safe and effective vaccines and therapeutics has proven vital to reducing morbidity and mortality from newly emerging viruses. Structural biology methods can be used to determine how antibodies elicited during infection or vaccination target viral proteins and identify viral epitopes that correlate with potent neutralization. Here we review how structural and molecular biology approaches have contributed to our understanding of antibody recognition of pathogenic viruses, specifically HIV-1, SARS-CoV-2, and Zika. Determining structural correlates of neutralization of viruses has guided the design of vaccines, monoclonal antibodies, and small molecule inhibitors in response to the global threat of viral epidemics.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , VIH-1/inmunología , SARS-CoV-2/inmunología , Virus Zika/inmunología , Síndrome de Inmunodeficiencia Adquirida/inmunología , Síndrome de Inmunodeficiencia Adquirida/prevención & control , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , COVID-19/inmunología , COVID-19/prevención & control , Cristalografía por Rayos X , Humanos , Vacunas Virales/inmunología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/prevención & control
7.
PLoS Pathog ; 17(9): e1009958, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1440996

RESUMEN

Cross-reactive epitopes (CREs) are similar epitopes on viruses that are recognized or neutralized by same antibodies. The S protein of SARS-CoV-2, similar to type I fusion proteins of viruses such as HIV-1 envelope (Env) and influenza hemagglutinin, is heavily glycosylated. Viral Env glycans, though host derived, are distinctly processed and thereby recognized or accommodated during antibody responses. In recent years, highly potent and/or broadly neutralizing human monoclonal antibodies (bnAbs) that are generated in chronic HIV-1 infections have been defined. These bnAbs exhibit atypical features such as extensive somatic hypermutations, long complementary determining region (CDR) lengths, tyrosine sulfation and presence of insertions/deletions, enabling them to effectively neutralize diverse HIV-1 viruses despite extensive variations within the core epitopes they recognize. As some of the HIV-1 bnAbs have evolved to recognize the dense viral glycans and cross-reactive epitopes (CREs), we assessed if these bnAbs cross-react with SARS-CoV-2. Several HIV-1 bnAbs showed cross-reactivity with SARS-CoV-2 while one HIV-1 CD4 binding site bnAb, N6, neutralized SARS-CoV-2. Furthermore, neutralizing plasma antibodies of chronically HIV-1 infected children showed cross neutralizing activity against SARS-CoV-2 pseudoviruses. Collectively, our observations suggest that human monoclonal antibodies tolerating extensive epitope variability can be leveraged to neutralize pathogens with related antigenic profile.


Asunto(s)
Anticuerpos ampliamente neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , SARS-CoV-2/inmunología , Anticuerpos Monoclonales/inmunología , COVID-19/inmunología , Reacciones Cruzadas/inmunología , Humanos , Plasma/inmunología
8.
Viruses ; 13(9)2021 09 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1430973

RESUMEN

Monocytes are key modulators in acute viral infections, determining both inflammation and development of specific B- and T-cell responses. Recently, these cells were shown to be associated to different SARS-CoV-2 infection outcome. However, their role in acute HIV-1 infection remains unclear. We had the opportunity to evaluate the mononuclear cell compartment in an early hyper-acute HIV-1 patient in comparison with an untreated chronic HIV-1 and a cohort of SARS-CoV-2 infected patients, by high dimensional flow cytometry using an unsupervised approach. A distinct polarization of the monocyte phenotype was observed in the two viral infections, with maintenance of pro-inflammatory M1-like profile in HIV-1, in contrast to the M2-like immunosuppressive shift in SARS-CoV-2. Noticeably, both acute infections had reduced CD14low/-CD16+ non-classical monocytes, with depletion of the population expressing Slan (6-sulfo LacNac), which is thought to contribute to immune surveillance through pro-inflammatory properties. This depletion indicates a potential role of these cells in acute viral infection, which has not previously been explored. The inflammatory state accompanied by the depletion of Slan+ monocytes may provide new insights on the critical events that determine the rate of viral set-point in acute HIV-1 infection and subsequent impact on transmission and reservoir establishment.


Asunto(s)
Amino Azúcares/inmunología , COVID-19/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Monocitos/inmunología , Adulto , Anciano , Estudios de Cohortes , Femenino , Humanos , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Adulto Joven
9.
Cell Rep ; 37(1): 109793, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1415261

RESUMEN

The mortality risk of coronavirus disease 2019 (COVID-19) patients has been linked to the cytokine storm caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding the inflammatory responses shared between COVID-19 and other infectious diseases that feature cytokine storms may therefore help in developing improved therapeutic strategies. Here, we use integrative analysis of single-cell transcriptomes to characterize the inflammatory signatures of peripheral blood mononuclear cells from patients with COVID-19, sepsis, and HIV infection. We identify ten hyperinflammatory cell subtypes in which monocytes are the main contributors to the transcriptional differences in these infections. Monocytes from COVID-19 patients share hyperinflammatory signatures with HIV infection and immunosuppressive signatures with sepsis. Finally, we construct a "three-stage" model of heterogeneity among COVID-19 patients, related to the hyperinflammatory and immunosuppressive signatures in monocytes. Our study thus reveals cellular and molecular insights about inflammatory responses to SARS-CoV-2 infection and provides therapeutic guidance to improve treatments for subsets of COVID-19 patients.


Asunto(s)
COVID-19/sangre , COVID-19/inmunología , Infecciones por VIH/sangre , Leucocitos Mononucleares/metabolismo , SARS-CoV-2/inmunología , Sepsis/sangre , Transcriptoma , COVID-19/virología , Síndrome de Liberación de Citoquinas/sangre , Síndrome de Liberación de Citoquinas/inmunología , Citocinas/sangre , Análisis de Datos , Conjuntos de Datos como Asunto , Infecciones por VIH/inmunología , VIH-1/inmunología , Humanos , Terapia de Inmunosupresión , Inflamación/sangre , Leucocitos Mononucleares/inmunología , Sepsis/inmunología , Análisis de la Célula Individual
10.
Int J Med Sci ; 18(3): 846-851, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1389719

RESUMEN

In the last 50 years we have experienced two big pandemics, the HIV pandemic and the pandemic caused by SARS-CoV-2. Both pandemics are caused by RNA viruses and have reached us from animals. These two viruses are different in the transmission mode and in the symptoms they generate. However, they have important similarities: the fear in the population, increase in proinflammatory cytokines that generate intestinal microbiota modifications or NETosis production by polymorphonuclear neutrophils, among others. They have been implicated in the clinical, prognostic and therapeutic attitudes.


Asunto(s)
COVID-19/epidemiología , Infecciones por VIH/epidemiología , VIH-1/patogenicidad , Pandemias/historia , SARS-CoV-2/patogenicidad , COVID-19/inmunología , COVID-19/psicología , COVID-19/transmisión , Citocinas/sangre , Citocinas/inmunología , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Miedo , Carga Global de Enfermedades/estadística & datos numéricos , Infecciones por VIH/inmunología , Infecciones por VIH/psicología , Infecciones por VIH/transmisión , VIH-1/inmunología , VIH-1/aislamiento & purificación , Historia del Siglo XX , Historia del Siglo XXI , Interacciones Huésped-Patógeno/inmunología , Humanos , Mediadores de Inflamación/sangre , Mediadores de Inflamación/inmunología , Mortalidad , Neutrófilos/inmunología , Neutrófilos/metabolismo , Pandemias/estadística & datos numéricos , Pronóstico , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación
11.
Sci Adv ; 7(31)2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1388435

RESUMEN

Rationally designed protein subunit vaccines are being developed for a variety of viruses including influenza, RSV, SARS-CoV-2, and HIV. These vaccines are based on stabilized versions of the primary targets of neutralizing antibodies on the viral surface, namely, viral fusion glycoproteins. While these immunogens display the epitopes of potent neutralizing antibodies, they also present epitopes recognized by non-neutralizing or weakly neutralizing ("off-target") antibodies. Using our recently developed electron microscopy polyclonal epitope mapping approach, we have uncovered a phenomenon wherein off-target antibodies elicited by HIV trimer subunit vaccines cause the otherwise highly stabilized trimeric proteins to degrade into cognate protomers. Further, we show that these protomers expose an expanded suite of off-target epitopes, normally occluded inside the prefusion conformation of trimer, that subsequently elicit further off-target antibody responses. Our study provides critical insights for further improvement of HIV subunit trimer vaccines for future rounds of the iterative vaccine design process.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Anti-VIH/química , Infecciones por VIH/inmunología , VIH-1/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Vacunas contra el SIDA/química , Animales , COVID-19/inmunología , Femenino , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Humanos , Macaca mulatta , Conejos , SARS-CoV-2/química , SARS-CoV-2/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
12.
Molecules ; 25(12)2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1389454

RESUMEN

Viruses can be spread from one person to another; therefore, they may cause disorders in many people, sometimes leading to epidemics and even pandemics. New, previously unstudied viruses and some specific mutant or recombinant variants of known viruses constantly appear. An example is a variant of coronaviruses (CoV) causing severe acute respiratory syndrome (SARS), named SARS-CoV-2. Some antiviral drugs, such as remdesivir as well as antiretroviral drugs including darunavir, lopinavir, and ritonavir are suggested to be effective in treating disorders caused by SARS-CoV-2. There are data on the utilization of antiretroviral drugs against SARS-CoV-2. Since there are many studies aimed at the identification of the molecular mechanisms of human immunodeficiency virus type 1 (HIV-1) infection and the development of novel therapeutic approaches against HIV-1, we used HIV-1 for our case study to identify possible molecular pathways shared by SARS-CoV-2 and HIV-1. We applied a text and data mining workflow and identified a list of 46 targets, which can be essential for the development of infections caused by SARS-CoV-2 and HIV-1. We show that SARS-CoV-2 and HIV-1 share some molecular pathways involved in inflammation, immune response, cell cycle regulation.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/metabolismo , Minería de Datos/métodos , Infecciones por VIH/epidemiología , Infecciones por VIH/metabolismo , Interacciones Huésped-Patógeno/inmunología , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/metabolismo , Antiinflamatorios/uso terapéutico , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/inmunología , Antivirales/uso terapéutico , Betacoronavirus/efectos de los fármacos , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , COVID-19 , Proteínas del Sistema Complemento/genética , Proteínas del Sistema Complemento/inmunología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/inmunología , Bases de Datos Genéticas , Regulación de la Expresión Génica , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , VIH-1/efectos de los fármacos , VIH-1/inmunología , VIH-1/patogenicidad , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos/uso terapéutico , Inflamación , Interferones/genética , Interferones/inmunología , Interleucinas/genética , Interleucinas/inmunología , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/inmunología , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/inmunología , Proteínas Represoras/genética , Proteínas Represoras/inmunología , SARS-CoV-2 , Transducción de Señal , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología
13.
HLA ; 96(3): 277-298, 2020 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1388402

RESUMEN

We report detailed peptide-binding affinities between 438 HLA Class I and Class II proteins and complete proteomes of seven pandemic human viruses, including coronaviruses, influenza viruses and HIV-1. We contrast these affinities with HLA allele frequencies across hundreds of human populations worldwide. Statistical modelling shows that peptide-binding affinities classified into four distinct categories depend on the HLA locus but that the type of virus is only a weak predictor, except in the case of HIV-1. Among the strong HLA binders (IC50 ≤ 50), we uncovered 16 alleles (the top ones being A*02:02, B*15:03 and DRB1*01:02) binding more than 1% of peptides derived from all viruses, 9 (top ones including HLA-A*68:01, B*15:25, C*03:02 and DRB1*07:01) binding all viruses except HIV-1, and 15 (top ones A*02:01 and C*14:02) only binding coronaviruses. The frequencies of strongest and weakest HLA peptide binders differ significantly among populations from different geographic regions. In particular, Indigenous peoples of America show both higher frequencies of strongest and lower frequencies of weakest HLA binders. As many HLA proteins are found to be strong binders of peptides derived from distinct viral families, and are hence promiscuous (or generalist), we discuss this result in relation to possible signatures of natural selection on HLA promiscuous alleles due to past pathogenic infections. Our findings are highly relevant for both evolutionary genetics and the development of vaccine therapies. However they should not lead to forget that individual resistance and vulnerability to diseases go beyond the sole HLA allelic affinity and depend on multiple, complex and often unknown biological, environmental and other variables.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Infecciones por VIH/epidemiología , Antígenos HLA/química , Gripe Humana/epidemiología , Pandemias , Péptidos/química , Neumonía Viral/epidemiología , Síndrome Respiratorio Agudo Grave/epidemiología , Proteínas Virales/química , África/epidemiología , Américas/epidemiología , Secuencia de Aminoácidos , Asia/epidemiología , Australia/epidemiología , Betacoronavirus/genética , Betacoronavirus/inmunología , COVID-19 , Biología Computacional , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Europa (Continente)/epidemiología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/genética , VIH-1/inmunología , Antígenos HLA/clasificación , Antígenos HLA/genética , Antígenos HLA/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Cinética , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Péptidos/genética , Péptidos/inmunología , Neumonía Viral/inmunología , Neumonía Viral/virología , Unión Proteica , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave/inmunología , Síndrome Respiratorio Agudo Grave/virología , Proteínas Virales/genética , Proteínas Virales/inmunología
14.
J Neuroimmune Pharmacol ; 15(4): 584-627, 2020 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1384565

RESUMEN

With the current national opioid crisis, it is critical to examine the mechanisms underlying pathophysiologic interactions between human immunodeficiency virus (HIV) and opioids in the central nervous system (CNS). Recent advances in experimental models, methodology, and our understanding of disease processes at the molecular and cellular levels reveal opioid-HIV interactions with increasing clarity. However, despite the substantial new insight, the unique impact of opioids on the severity, progression, and prognosis of neuroHIV and HIV-associated neurocognitive disorders (HAND) are not fully understood. In this review, we explore, in detail, what is currently known about mechanisms underlying opioid interactions with HIV, with emphasis on individual HIV-1-expressed gene products at the molecular, cellular and systems levels. Furthermore, we review preclinical and clinical studies with a focus on key considerations when addressing questions of whether opioid-HIV interactive pathogenesis results in unique structural or functional deficits not seen with either disease alone. These considerations include, understanding the combined consequences of HIV-1 genetic variants, host variants, and µ-opioid receptor (MOR) and HIV chemokine co-receptor interactions on the comorbidity. Lastly, we present topics that need to be considered in the future to better understand the unique contributions of opioids to the pathophysiology of neuroHIV. Graphical Abstract Blood-brain barrier and the neurovascular unit. With HIV and opiate co-exposure (represented below the dotted line), there is breakdown of tight junction proteins and increased leakage of paracellular compounds into the brain. Despite this, opiate exposure selectively increases the expression of some efflux transporters, thereby restricting brain penetration of specific drugs.


Asunto(s)
Complejo SIDA Demencia/complicaciones , COVID-19 , Infecciones por VIH/complicaciones , Epidemia de Opioides , Trastornos Relacionados con Opioides/epidemiología , VIH-1/inmunología , Humanos
16.
PLoS Pathog ; 17(3): e1009407, 2021 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1338134

RESUMEN

Incessant antigenic evolution enables the persistence and spread of influenza virus in the human population. As the principal target of the immune response, the hemagglutinin (HA) surface antigen on influenza viruses continuously acquires and replaces N-linked glycosylation sites to shield immunogenic protein epitopes using host-derived glycans. Anti-glycan antibodies, such as 2G12, target the HIV-1 envelope protein (Env), which is even more extensively glycosylated and contains under-processed oligomannose-type clusters on its dense glycan shield. Here, we illustrate that 2G12 can also neutralize human seasonal influenza A H3N2 viruses that have evolved to present similar oligomannose-type clusters on their HAs from around 20 years after the 1968 pandemic. Using structural biology and mass spectrometric approaches, we find that two N-glycosylation sites close to the receptor binding site (RBS) on influenza hemagglutinin represent the oligomannose cluster recognized by 2G12. One of these glycan sites is highly conserved in all human H3N2 strains and the other emerged during virus evolution. These two N-glycosylation sites have also become crucial for fitness of recent H3N2 strains. These findings shed light on the evolution of the glycan shield on influenza virus and suggest 2G12-like antibodies can potentially act as broad neutralizers to target human enveloped viruses.


Asunto(s)
Anticuerpos Antivirales/inmunología , VIH-1/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Anticuerpos ampliamente neutralizantes , Reacciones Cruzadas , Infecciones por VIH/inmunología , Humanos , Gripe Humana/inmunología
17.
Retrovirology ; 18(1): 13, 2021 06 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1257950

RESUMEN

Humanized mice model human disease and as such are used commonly for research studies of infectious, degenerative and cancer disorders. Recent models also reflect hematopoiesis, natural immunity, neurobiology, and molecular pathways that influence disease pathobiology. A spectrum of immunodeficient mouse strains permit long-lived human progenitor cell engraftments. The presence of both innate and adaptive immunity enables high levels of human hematolymphoid reconstitution with cell susceptibility to a broad range of microbial infections. These mice also facilitate investigations of human pathobiology, natural disease processes and therapeutic efficacy in a broad spectrum of human disorders. However, a bridge between humans and mice requires a complete understanding of pathogen dose, co-morbidities, disease progression, environment, and genetics which can be mirrored in these mice. These must be considered for understanding of microbial susceptibility, prevention, and disease progression. With known common limitations for access to human tissues, evaluation of metabolic and physiological changes and limitations in large animal numbers, studies in mice prove important in planning human clinical trials. To these ends, this review serves to outline how humanized mice can be used in viral and pharmacologic research emphasizing both current and future studies of viral and neurodegenerative diseases. In all, humanized mouse provides cost-effective, high throughput studies of infection or degeneration in natural pathogen host cells, and the ability to test transmission and eradication of disease.


Asunto(s)
Modelos Animales de Enfermedad , Inmunidad Innata , Ratones SCID , Enfermedades Neurodegenerativas/inmunología , Animales , VIH-1/inmunología , Ratones
18.
J Clin Invest ; 131(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1269823

RESUMEN

T cells are involved in control of coronavirus disease 2019 (COVID-19), but limited knowledge is available on the relationship between antigen-specific T cell response and disease severity. Here, we used flow cytometry to assess the magnitude, function, and phenotype of SARS coronavirus 2-specific (SARS-CoV-2-specific) CD4+ T cells in 95 hospitalized COVID-19 patients, 38 of them being HIV-1 and/or tuberculosis (TB) coinfected, and 38 non-COVID-19 patients. We showed that SARS-CoV-2-specific CD4+ T cell attributes, rather than magnitude, were associated with disease severity, with severe disease being characterized by poor polyfunctional potential, reduced proliferation capacity, and enhanced HLA-DR expression. Moreover, HIV-1 and TB coinfection skewed the SARS-CoV-2 T cell response. HIV-1-mediated CD4+ T cell depletion associated with suboptimal T cell and humoral immune responses to SARS-CoV-2, and a decrease in the polyfunctional capacity of SARS-CoV-2-specific CD4+ T cells was observed in COVID-19 patients with active TB. Our results also revealed that COVID-19 patients displayed reduced frequency of Mycobacterium tuberculosis-specific CD4+ T cells, with possible implications for TB disease progression. These results corroborate the important role of SARS-CoV-2-specific T cells in COVID-19 pathogenesis and support the concept of altered T cell functions in patients with severe disease.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , COVID-19/inmunología , Coinfección/inmunología , VIH-1/inmunología , Mycobacterium tuberculosis/inmunología , SARS-CoV-2/inmunología , Tuberculosis/inmunología , Adulto , Anciano , Linfocitos T CD4-Positivos/patología , COVID-19/patología , Coinfección/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Tuberculosis/patología
19.
Lancet HIV ; 8(6): e317-e318, 2021 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1253798
20.
Viruses ; 13(5)2021 05 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1248052

RESUMEN

Mucins and mucin-like molecules are highly glycosylated, high-molecular-weight cell surface proteins that possess a semi-rigid and highly extended extracellular domain. P-selectin glycoprotein ligand-1 (PSGL-1), a mucin-like glycoprotein, has recently been found to restrict HIV-1 infectivity through virion incorporation that sterically hinders virus particle attachment to target cells. Here, we report the identification of a family of antiviral cellular proteins, named the Surface-Hinged, Rigidly-Extended Killer (SHREK) family of virion inactivators (PSGL-1, CD43, TIM-1, CD34, PODXL1, PODXL2, CD164, MUC1, MUC4, and TMEM123) that share similar structural characteristics with PSGL-1. We demonstrate that SHREK proteins block HIV-1 infectivity by inhibiting virus particle attachment to target cells. In addition, we demonstrate that SHREK proteins are broad-spectrum host antiviral factors that block the infection of diverse viruses such as influenza A. Furthermore, we demonstrate that a subset of SHREKs also blocks the infectivity of a hybrid alphavirus-SARS-CoV-2 (Ha-CoV-2) pseudovirus. These results suggest that SHREK proteins may be a part of host innate immunity against enveloped viruses.


Asunto(s)
COVID-19/inmunología , Infecciones por VIH/inmunología , Glicoproteínas de Membrana/metabolismo , Acoplamiento Viral , Animales , COVID-19/virología , Perros , Células HEK293 , VIH-1/inmunología , Células HeLa , Interacciones Microbiota-Huesped , Humanos , Inmunidad Innata , Células de Riñón Canino Madin Darby , Mucinas/farmacología , SARS-CoV-2/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA